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Last lecture, we introduced the idea of a set, some basic notation and then talked about some laws governing

sets like the axiom of extensionality, as well as the notions of intersection and union. Today, we’ll look at

some further set-theoretic ideas, particularly the notion of a powerset, an ordered n-tuple, and a cartersian

product. Then we’ll start to think about how we can use set theory to think about properties and relations.

1. Powerset

1.1. If x is a set, then the powerset of x , which we write P(x), is the set of all subsets of x . For every set

x , there is the power set of x . To express the definition of the powerset of x it is useful to have some more

notation for describing sets. Last week, we saw that if a set is finite, we can denote the set by enclosing

a list naming the members of that set in set-brackets, i.e., {a, b, c} is the set containing a, b, and c . But we

can also write the set of Fs as {x | Fx}, i.e., the set of all and only x such that Fx . We define the powerset of x :

POWERSET: P(x) = {y | y ⊆ x} = {y | ∀z(z ∈ y → z ∈ x)}

(Read: The powerset of x is the set of all y such that y is a subset of x .)

1.2. Crucially, P(x) is the set of all subsets of x and thus the only members of P(x) are themselves sets.

That means that the members of P(x) should not generally be confused with the members of x , although

sometimes both P(x) and x might share members. Some examples will help illustrate this.

• If x = {1, 2}, then P(x) =
{
{1}, {2}, {1, 2},∅}

}
Example 1

That is, each of {1}, {2}, {1, 2} and ∅ are subsets of {1, 2} and nothing else is.

It might seem weird that ∅ ∈ P({1, 2}). But note that ∀z(z ∈ ∅→ z ∈ {1, 2}) is trivially true.

Note: no y ∈ P(x) is a y ∈ x or vice versa.

• If x = {1,∅}, then P(x) =
{
{1}, {∅}, {1,∅},∅

}
Example 2

Importantly, {∅} and ∅ are distinct—only the former is a non-empty set.

Note: ∅ ∈ x and ∅ ∈ P(x) and so x and its powerset in this case share a member.

1.3. Generally, P(x) has strictly more members than x . This is often phrased as the result that, for any set

x , P(x) has a greater cardinality than x and is known as Cantor’s Theorem. If some set x has n many

members, for some natural number n (e.g., 0, 1, 2, 3, etc.), then the powerset has 2n members. This fact is

useful for checking whether you have found all the subsets of a given set. (“Have I got all 2n subsets?”)

1.4. Cantor’s Theorem is not restricted to finite sets. Even if x is infinite, P(x) has a great cardinality than

x . This is certainly a very interesting result, since it means that there are different sizes of infinity—some

infinities are larger than others—and there is no largest cardinality, e.g., the infinite set of real numbers (e.g.,

0, 1, 5.3,
√
2, etc.) is larger than the infinite set of the integers, i.e., positive or negative natural numbers.



2. Ordered Pairs

2.1. The ordered pair of a, b is written as ⟨a, b⟩. Importantly, the ordered pair ⟨a, b⟩ is not the same as the

ordered pair ⟨b, a⟩, nor the set {a, b}. Crucial to the definition is that the order matters. We define this:

ORDERED PAIR: The ordered pair ⟨a, b⟩ is the set {a, {a, b}}.

Thus, ⟨a, b⟩ = {a, {a, b}} and ⟨b, a⟩ = {b, {a, b}}. By the Axiom of Extensionality, {a, {a, b}} is not identical to

{b, {a, b}}, since a ∈ {a, {a, b}} and a < {b, {a, b}} and so ⟨b, a⟩ , ⟨b, a⟩, just as we want.

2.2. There are not just ordered pairs, but ordered triples, ordered quadruples, all the way up to ordered
n-tuples, for any natural number n. We define an ordered n-tuple ⟨a1, ..., an⟩ in the following way.

ORDERED N-TUPLE: ⟨a1, ..., an⟩ = ⟨⟨a1, ..., an−1⟩, an⟩, for any natural number n.

2.3. This is a bit complicated and it’s initially difficult to see how we use this definition. Here’s an example.

• How would we unpack the definition of ⟨a, b, c⟩? Question 1

(i) ⟨a, b, c⟩ = ⟨⟨a, b⟩, c⟩ = {⟨a, b⟩, {⟨a, b⟩, c}}.

(ii) ⟨a, b⟩ = {a, {a, b}}. Putting (i) and (ii) together: {{a, {a, b}}, {{a, {a, b}}, c}}

* Note: You need to know this definition exists, but usually when talking about ordered

n-tuples, it suffices to just write them as ⟨a1, ..., an⟩ and nothing more complicated.

3. Cartesian Products and Complements

3.1. With the notion of an ordered pair, we can define the cartesian product of two sets. For any two sets,

y and z , there is the so-called cartesian product, y × z . This is another set which contains all and only the

ordered pairs ⟨a, b⟩, where the first of the pair is a member of y and the second of the pair is a member of z .

CARTESIAN PRODUCT: y × z = {⟨a, b⟩ | a ∈ y ∧ b ∈ z}

(Read: The cartesian product y × z is the set of ordered pairs ⟨a, b⟩ where a is in y and b is in z .)

The cartesian product of a set y with itself, i.e., y × y , is simple denoted y2.

3.2. Another important idea is the complement of two sets. For any two sets, x and y , there is a set which

contains all of the objects in x which are not in y . This is the complement of y in x and we write it as x − y .

COMPLEMENT OF Y IN X : x − y = {z | z ∈ x ∧ z < y }

(Read: The complement of y in x contains any z which is in x but not in y .)



If we have two set A and B, we can visualise the complement of A in B in terms with a Venn diagram.

The complement of A in B is the red portion.

4. Expressing Yourself Set-Theoretically

4.1. We now have quite a number of set-theoretic tools (intersection, union, powerset, cartesian product,

complements) which we can use to give expressions for a variety of different sets. You should be able to

express sets using the range of different notation we’ve been using so far. Here are some examples.

• Let S be the set of sandwiches sold in the Tesco meal deal, C be the set of crisps Example 3

sold, and D be the set of drinks. We can then express:

(i) All products sold in the meal deal: (S ∪ C ) ∪ D

(ii) All sandwich and crisps combinations: S × C

(iii) All vegetarian sandwich and crisps combinations: (S − {x | x ∈ S and contains meat}) × C .

4.2. You also should be able to use the definitions to give explicit examples of sets with certain features.

• Give an example of the following sets: Question 2

(i) A set with exactly two members.

· Straightforward: {1, 2}

(ii) Two sets, the complement of one in the other has exactly two members.

· Straightforward: {1, 2, 3} − {1} = {2, 3}.

(iii) A set, the powerset of which has exactly two members.

· Remember that P(x) has 2n members, if x has n members. So any set which has

exactly one member, has a powerset which has exactly two members.

For example, P({1}) = {{1},∅}. (Any set with exactly one member will do.)

(iv) Two sets, the cartesian product of which has exactly two members.

· If x has n members and y has m members, then x × y has n multiplied by m members.

So we need a set x with one member and a set y with two, e.g., {1} and {1, 2}.

{1} × {1, 2} = {⟨1, 1⟩, ⟨1, 2⟩}



5. Properties, Relations, and Set Theory

5.1. It is standard to think that properties and relations are intensional, i.e., there can be two distinct prop-

erties which are had by exactly the same objects. The classic example: being a renate (having a kidney)

and being a cordate (having a heart). That being said, it can be useful to sometimes only care about their

extensions. The extension of a property is just all and only the objects which have that property.

5.2. We can represent the extension of a property as the set of its instances. So, the extension of blue is

the set of all and only the blue things. Generally, then, the extension of P is the set {x | Px}. We can then

represent various extensional relations between properties using sets. For example,

– Two properties P and Q are co-extensive if and only if {x | Px} = {x | Qx} Example 4

– A property P includes a property Q if and only if {x | Px} ⊆ {x | Qx}

5.3. This might work for representing the extensions of properties, but it won’t work for relations. Properties

are exemplified by individual objects, but relations hold between multiple objects. Moreover, the order in

which the objects are related is often important. Instead, then, we represent the extension of a relation with

sets of ordered n-tuples. For a binary (two-place) relation like Rxy , the extension is given by a special set
of ordered pairs: the extension of Rxy is {⟨x , y⟩ | Rxy }. For example,

– The extension of x is taller than y is {⟨x , y⟩ | x is taller than y }. Example 5

* ⟨Andre the Giant, Christopher⟩ ∈ {⟨x , y⟩ | x is taller than y }. Andre the Giant is taller than me.

* ⟨Christopher, Andre the Giant⟩ < {⟨x , y⟩ | x is taller than y }. I’m not taller than Andre the Giant.

5.3. Two final facts worth noting. First, the empty set ∅ is an extension of some relations: empty relations

which don’t relate anything to anything. For example, the relation of not being self-identical:

The extension of not being self-identical = {⟨x , x⟩ | ¬x = x} = ∅

Second, whilst we need ordered pairs to specify the extension of two-place relations, we need ordered triples

for three-place relations, ordered quadruples for four-place relations, and so on. Generally, then, we give the

extension of an n-place relation with a special set of n-tuples. For example,

The extension of x is taller than both y and z = {⟨x , y , z⟩ | x is taller than both y and z}


