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Last lecture, we outlined some basic characteristics we can ascribe to relations—reflexivity, anti-reflexivity,

symmetry, anti-symmetry, transitivity, and anti-transitivity—as well as some basic facts about relations. This

lecture, we’ll go a little further in characterising relations.

1. Equivalance Relations, Classes, and Partitions.

1.1. Recall that a binary relation R is an equivalence relation on a domain if and only if R is reflexive,

symmetric, and transitive. A simple example of an equivalence relation on a domain is the relation of identity

on the domain: the set of ordered pairs ⟨x , x⟩, where x is an element of the domain. A less trivial example

would be the relation of x and y are in the same logic class on the domain of all Part IA Philosophy students.

1.2. An important concept is the notion of a partition of a set. Take a set x . Informally, a partition of x is a

way of dividing up the content of x into regions in such a way that everything in x is in exactly one region.

In other words, it is a way of dividing up a set into non-overlapping regions which ‘cover’ the entire set. To

illustrate, suppose we have a set {1, 2, 3, 4, 5} and three ‘ways’ of dividing up its elements, A,B, and C :

A represents a partition; B and C do not.

Crucially, B misses an element out and C carves the set up in overlapping ways. A partition must divide the

set up exhaustively and leave no element out and exclusively and have each element in only one region.

1.3. Formally, we define a partition P on a set X as follows. P is a set of subsets of X such that:

PARTITION: ∀z
(
z ∈ X → ∃p(p ∈ P ∧ z ∈ p︸               ︷︷               ︸

(i)

∧∀q(z ∈ q ∧ q ∈ P → q = p)︸                             ︷︷                             ︸
(ii)

)
)

(Read: For any element z of X , (i) there exists a subset p of X in the partition P and z is in p and (ii)

for any other subset q of X in the partition P, z is in q only if q and p are the same subset.)

Here, the first part of the formal definition (i) secures that a partition is exhaustive and the second part of

the formal definition (ii) secures that a partition is exclusive.

1.4. Now, there’s an interesting connection between partitions on sets and equivalence relations. For any

equivalence relation R on a domain, there is a special partition on that domain. Each of the individual sectors

of that partition are known as equivalence classes. That special partition are the members of the domain

which relate to each other by R. Let’s illustrate this connection with some examples.



1. Let the domain (set) be the set of all Part IA Philosophy students S . Consider the relation x is in the
same logic class as y . This is an equivalence relation: reflexive, symmetrical, and transitive. As

such, we can define the set of equivalence classes of S defined by this relation:

{p ⊂ S | ∀x∀y(x , y ∈ p ↔ x is in the same logic class as y))}

This set of equivalence classes is a special partition P (set of subsets p ⊂ S) on the set of all Part IA

Phil. students. Crucially, any student in S is in some p ∈ P and no student is more than one p ∈ P.

2. Let the domain (set) be the set of all people who have ever lived. The relation x was born at the same
time as y is an equivalence relation. The equivalence classes of the set of all people who have ever

lived, then, are just the subset of people all born at t1, the subset of people all born at t2, and so on...

1.5. As I have stressed a number of times, identity is an equivalence relation. What do the set of equiva-

lence classes defined by this relation look like for any set? Well, these equivalence classes will simply be

singletons. So, if X = {1, 2, 3, 4}, the set of all the equivalence classes in X corresponding to identity will

just be {{1}, {2}, {3}, {4}}. You can see that this satisfies the definition of a partition on X above. The notion

of a partition and equivalence classes has some interesting philosophical applications. Russell and Frege

proposed to define numbers by identifying them as the equivalence classes of sets which are equinumerous.

2. Other Characteristics of Relations

2.1. For any relation R, there is a relation known as the converse or inverse of R. This is often denoted as

R ′ (pronounced: “R prime”). The converse/inverse of a relation R is the relation which holds between y and

x if R holds between x and y . More precisely, in symbols we would say that :

CONVERSE/INVERSE: For any relation R there is a converse/inverse R ′ such that ∀x∀y(Rxy ↔ R ′yx).

For example, if R is the relation x is directly to the north of y , then R ′ is x is directly to the south of y .

Similarly, if R is the relation of x is smaller than y , then R ′ is the relation of x is bigger than y . There is a

nice relationship between R ′ and symmetry: R is its own inverse/converse R ′ iff R is symmetric.

2.2. For any relation R, there is the relation known as the ancestral of R. This is often written as R ∗.

ANCESTRAL: The ancestral R ∗ of R is such that R ∗xy iff for some z ,w , v , ..., u: Rxz , Rzw , Rwv , Ruy .

An obvious example of an ancestral relation is the relation of x is an ancestor of y as the ancestral relation

of x has y as a parent. Someone y is my ancestor just in case there are some people z ,w , u, ..., v such

that I have z as a parent, z has w as a parent, and so on, ... all the way to v has y as a parent. In Part IA

Personal Identity, we looked at the ancestral of x remembers being y to reformulate the memory criterion

of personal identity over time from Reid’s objection that this criterion entails that identity is non-transitive.

3. Functions

2.3. A relation R is a function on a domain if and only if it relates each member of the domain to some unique

other individual. In other words, for any three objects x , y , z , if R relates x to y and R relates x to z , then y is

just the same thing as z . More precisely, we can define this as follows.



FUNCTION: Relation R is a function iff ∀x∀y∀z((Rxy ∧ Rxz)→ y = z).

Now, you may well have come across functions presented with notation like ‘f (x) = y ’ and ‘g(y) = x ’ and

may not be used to thinking about them as a special kind of relation. But remember what I emphasised last

week: any set of ordered pairs can be taken to represent a relation. Similarly, sets of ordered pairs are also

typically taken to represent functions. So functions and relations, as construed here, go hand in hand.

2.4. There are three key properties of functions that you ought to know: what it means for a function to

surjective, injective and bijective. To understand these, it’s easier to think of functions as relating two sets

and to adopt the notation of f , f (x), g(y) = x , etc. The first set, we call the domain of the function, and the

second set we call the range. A function takes some element x from the domain (x ∈ domain) and maps it
to an element of the range (y ∈ range). If x is mapped to y by f , were write f (x) = y . Of course, f is still a

function and so each element of the domain is mapped to only one element of the range.

2.5. A function is surjective iff, for every element in the range y , there is some element in the domain x and

f (x) = y . It makes sure that every element in the range is paired with at least element of the domain:

2.6. A function is injective just in case, for any x and y in the domain, if f (x) = f (y), then x = y . An injective

function does not map distinct members of the domain to the same element in the range:

2.7. Finally, a function is bjiective if and only if it is injective and surjective. This is often known as a one-

to-one correspondence. If a function is bijective, then every element of the domain is mapped to a unique

element of the range. Diagrammatically, with domain as S and range as S ′:

2.8. A final point. An interesting application of functions is that they can allow us to express claims about the

equinumerosity of sets without a prior appeal to the concept of number. Two sets are equinumerous if and

only if there is a bijection between two sets. Thus, the Russell-Frege proposal of understanding numbers as

equivalence classes of equinumerous sets is not egregiously circular.


