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Last week, we started covering some preliminary ground—what is logic and what questions can we ask

about its nature— and we then looked at the view that logic is analytic and a priori. We looked at one partic-

ularly extreme way of rejecting the analytic-a priori view of logic—Quine’s holistic argument that everything,

including logic, is revisable. We looked at some objections to Quine’s rejection of the a priority of all logic.

Our tentative conclusion: sure, we can’t revise all logic, but that’s consistent some logic being a posteriori.

This week, we’ll look at Putnam’s influential proposal for adopting quantum logic in (Putnam, 1979) as an

interesting case study of the kind of empirical argument one could give for revising logic. This week, will be

largely expository. Next week, we’ll discuss in more detail whether Putnam’s argument is successful.

1. Putnam on Geometry

1.1 To understand Putnam’s case for revising classical logic to quantum logic, we should first focus on

what he has to say about geometry—particularly, what he has to say about the shift away from Euclidean

geometry in the advent of General Relativity. For Putnam, there is a perfect parallel between the case of

revising geometry and the case of revising classical logic to quantum logic. (Quantum logic is first introduced

in (Birkhoff and Neumann, 1936)).

1.2. Consider two straight lines AB and CD which are a constant distance apart to the ‘left’ of a perpendicular

line EF, but which, after a crossing EF, begin to converge. This is illustrated in (Putnam, 1979):

Initially, one might think that the situation here is not possible. At the very least, the situation as we described

it might be thought impossible—we cannot have two straight lines like this. Whilst this situation is not a formal

contradiction of the form p ∧ ¬p, intuitively this situation is just as contradictory as saying that a ball is both

red all over and blue all over, or someone is bachelor and married, see (Putnam, 1979: 174–6)

1.3. Or is it? What’s interesting about this case is that, according to General Relativity, this is not only

possible, but it actually occurs. That is, one can have two straight lines which are locally parallel, but which

converge. In Euclidean geometry, if two lines are straight and locally parallel, then they cannot converge at

any point in space. However, according to General Relativity, space-time has a non-Euclidean geometry. In

both Euclidean and Non-Euclidean geometry, we have the same definition of a straight line: a straight line

between two points is the shortest path between those two points. However, in non-Euclidean geometry, this

no longer entails that two locally parallel lines are non-convergent.



1.4. Putnam finds this kind of case striking: it is the overturning of previously ‘necessary’ truths by a funda-

mentally empirical argument (1979: 190–98) What’s important to our present concerns here is that Putnam

argues that we should think that precisely the same thing should happen in logic. Given the advent of Quan-

tum Mechanics, we should reject classical in favour of quantum logic. Logic is as empirical as geometry.

2. A Précis of Quantum Logic

2.1. We should first say what quantum logic is before talking about why we should revise classic logic to

quantum logic. There are various ways of defining quantum logic. Putnam initially defines quantum logic by

giving an interpretation of the mathematical formalism of quantum mechanics. This is done with a certain

kind of vector space of infinite dimensions—a Hilbert Space. According to this interpretation, we interpret

sub-spaces of a Hilbert space H as propositions, we introduce various operations on subspaces, e.g., span

and intersection, and these operations correspond to the logical operations like conjunction and disjunction.

2.2. An equivalent (and slightly easier) way of defining quantum logic is using the notion of a lattice. A lattice

is set-theoretic structure. In particular, a special kind of partially ordered set, i.e., members of the set satisfy

a relation (a partial ordering) which is reflexive, anti-symmetric, and transitive. A lattice is closed under two

operations called join (∨) and meet (∧). (See the Appendix for all the details.)

2.3. For our purposes, we can be concrete and just consider the set of propositions P partially ordered by

entailment. In this case, we can think of join and meet as corresponding to the disjunction and conjunction

of two propositions. So, the set P of propositions partially ordered by entailment indeed forms a lattice. It

closed under join and meet: if p, q ∈ P, then p ∨ q ∈ P and p ∧ q ∈ P. Lattices can have further properties:

Ortholattice: A lattice is an ortholattice if there is a so-called greatest element (1) and a so-called least

element (0). In the case of the set P, think of the greatest element as the proposition entailed by any

p ∈ P. In the case of P, think of the least element as the proposition entailed by no p ∈ P. (Here

propositions are coarse-grained and so there is a unique least and greatest element.)

Orthocomplementation: A lattice is orthocomplemented if there is an operation called complementation

∗ such that, for any two members a, b of the set: (i) a ∨ a∗ = 1; (ii) a ∧ a∗ = 0; (iii) a∗∗ = a; and (iv)

(a ∧ b)∗ = a∗ ∨ b∗. In the case of the set P, think of ∗ as negation.

Distributive: A lattice is distributive if and only if, for any a, b, c in the set: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

2.4. We can now precisely characterise quantum logic and the difference between quantum logic and classi-

cal logic. Propositions form a distributive orthocomplemented lattice with respect to entailment, according to

classical logic. This is equivalent to saying that propositions form a Boolean algebra, according to classical

logic. However, propositions from a non-distributive orthocomplemted lattice, according to quantum logic.

2.5. There are significant similarities between distributive and non-distributive orthocomplemented lattices.

As such, there are significant similarities between quantum and classic logic. The following hold for both:

(∨) p ⊨ p ∨ q; and if p1 ⊨ q and p2 ⊨ q, then p1 ∨ p2 ⊨ q.

(∧) p ∧ q ⊨ p; and p, q ⊨ p ∧ q.

(¬) p ∧ ¬p is a contradiction; ⊨ p ∨ ¬p and ¬¬p ⊨ p.

The crucial difference between classical and quantum logic boils down to a disagreement over the standard

distribution law, i.e., p ∧ (q ∨ r) ⊨ (p ∧ q) ∨ (p ∧ r). This, on the face of it, seems wholly unproblematic: I’m

going to go town and it will either rain or it won’t rain therefore either I’m going to go to town and it will rain

or I’m going to go to town and it will not rain. So, why reject distribution? Putnam’s fundamental point is that

distribution is at the heart of several deep puzzles arising from quantum mechanics. So, blame distribution.



3. Putnam’s Case for Quantum Logic

3.1. Broadly speaking, Putnam’s argument for quantum logic is not that it is a more convenient logic with

which we should formulate quantum mechanics. Rather, the thought is that if we instead stick with classical

logic, we are forced to make conclusions about various quantum phenomena which we should very much

avoid. Classical logic should be banned, just as Euclidean geometry was ditched after General Relativity.

3.2. Consider the phenomena of complementarity. In quantum mechanics, the uncertainty principle tells us

that we cannot specify the precise momentum and precise position of any given particle. That is, if M1 spec-

ifies the precise momentum of, say, an electron and P1 specifies the precise position of the same electron,

then there cannot be a specification M1 ∧ P1 of the precise momentum and position of the electron. This

is puzzling. In fact, this is especially puzzling because quantum mechanics does not rule out a specifica-

tion of some precise momentum M alone for a particle. Moreover, the following is a valid inference, where

P1 ∨ ... ∨ Pn is the disjunction of all the possible specifications of the precise position of the same particle.

M ⊨Q/C M ∧ (P1 ∨ ... ∨ Pn) (1)

According to classical logic, which contains distribution, we also have:

M ∧ (P1 ∨ ... ∨ Pn) ⊨C (M ∧ P1) ∨ ... ∨ (M ∧ Pn) (2)

So, by (1) and the transitivity of entailment, we get the following valid inference in classical logic:

M ⊨c (M ∧ P1) ∨ ... ∨ (M ∧ Pn) (3)

But each of (M ∧Pi ) is problematic in quantum mechanics. Quantum logic avoids (3), since distribution fails

to be quantum logically valid: M ∧ (P1 ∨ ...∨Pn) ⊭Q (M ∧P1)∨ ...∨ (M ∧Pn). Indeed, according to quantum

logic, any (ϕm ∧ψp), where ϕm involves specifying the precise momentum of some particle and ψm involves

specifying the precise position of the same particle is a logical contradiction (Putnam, 1979: 180).

3.3. An essential part of Putnam’s argument is that the only way of preserving classical logic in the face of it

licensing problematic inferences like (3) is to adopt bad positions in the metaphysics of science. For instance,

you might try to explain away the issue with (3) by appealing an interpretation of quantum mechanics in

which observation or measurement collapses the uncertainty over the precise specification of momentum

and position, or an interpretation where one of the disjuncts M ∧ Pi is really true, just undetectable. Putnam

thinks that none of these options are palatable; or at least more palatable than revising the law of distribution.

3.4. Putnam gives another argument for revising our logic to quantum logic, stemming from a puzzle which

arises from the so-called double-slit experiment. Here’s the set up for the experiment.

Double-Slit Experiment: We have a vaccuum chamber, some controlled source of photons at one end and

a photographic plate at the other end. In between the photon source and the photographic plate is

barrier with two equal slits, allowing the photons to pass through to the photographic plate.

3.5. Now, if we let A1 be ‘the photon passes through the first slit’, A2 be ‘the photon passes through the

second slit’, and R be ‘the photon strikes a particular tiny region’, then we can calculate the probability that

the photon strikes R given that it goes through the first slit Pr(R |A1) and the probability that the photon

strikes R given that it goes through the second slit Pr(R |A2). Importantly, if only the first slit is open, then



Pr(R |A1) is the same as Pr(R |A2), if only the second slit is open. Moreover, this fact is both experimentally

verifiable and calculable from both quantum and classical mechanics.

3.6. Why is this an important fact? It’s important because things get odd when we try to calculate, using

classical mechanics, the probability the photon hits region R if we leave both slits open. Classical mechanics

predicts that the probability that the photon hits region R is equal to:

1

2
Pr(R |A1) +

1

2
Pr(R |A2) (4)

However, quantum mechanics predicts otherwise. Indeed, (4) is experimentally invalidated. This alone

should be startling because the classical derivation of the relevant probabilities when only one slit was open

conformed to experiment. What difference should there being two slits open have for each single photon?

3.7. Putnam’s diagnosis of the problem here is that there is only a clash between the classical mechanical

derivation and the two-slit case if the derivation is carried out in a classical logic. The full derivation of (4)

is unnecessary to show this. What’s important is that to derive (4), we begin by calculating the probability

that the photon hits region R, given that it goes through either the first or the second slit. After all, to hit the

region at all, it must go through one or the other. Now, by the standard definition of conditional probability:

Pr(R |A1 ∨ A2) =
Pr((A1 ∨ A2) ∧ R)

Pr(A1 ∨ A2)
(5)

And a crucial part of the classical derivation of (4) is the following.

Pr((A1 ∨ A2) ∧ R)

Pr(A1 ∨ A2)
=

Pr((A1 ∧ R) ∨ (A2 ∧ R))

Pr(A1 ∨ A2)
(6)

Of course, (6) is true according to classical logic. However, (6) holds only because of distribution. So, (6)

fails to be true, according to quantum logic. For Putnam, this is crucial. If our logic is classical, then we get a

clash between the classical behaviour of the photon in the one-slit case and the non-classical behaviour of

the photon in the two-slit case. If our logic is quantum, (4) is not even a classical prediction.

3.8. Of course, Putnam is not here saying that classical mechanics is right. Rather, his point is that there is

no need for further explanatory work—no need to reach again for bad philosophy of science—to account for

the mysterious divergence from the predicted (4) in the two-slit case, see (Putnam, 1979: 181):

Someone who believes classical logic must conclude from the failure of the classical law that one photon can

somehow go through two slits ... or believe that the electron somehow ‘prefers’ one slit to the other (but only

when no detector is placed in the slit to detect this mysterious preference), or believe that in some strange

way the electron going through slit 1 ‘knows’ that slit 2 is open and behaves differently than it would if slit 2

were closed; while someone who believe quantum logic would see no reason to predict [(4)] in the first place.
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Appendix: Partial Orders, Lattices, Orthocomplementation, and Distribution.

DEFINITION 1. (Partial Order). A partial order is a binary relation ≤ on a set A if and only if:

(i) ≤ is reflexive (for any a ∈ A: a ≤ a)

(ii) ≤ is anti-symmetric (for any a, b ∈ A: if a ≤ b and b ≤ a, then a = b)

(iii) ≤ is transitive (for any a, b, c ∈ A: if a ≤ b, b ≤ c, then a ≤ c)

DEFINITION 2. (Poset). A partially ordered set (poset) is a pair ⟨A,≤⟩, where ≤ is a partial ordering on A.

DEFINITION 3. (Bounds). If ⟨A,≤⟩ is a partially ordered set and B ⊆ A, then:

(i) a ∈ A is an upper bound of B if b ≤ a, for any b ∈ B

(ii) a ∈ A is a lower bound of B if a ≤ b, for any b ∈ B

(iii) a ∈ A is the least upper bound of B if a is upper bound of B and a ≤ y , for any upper bound y of B.

(iv) a ∈ A is the greatest lower bound of B if a is lower bound of B and y ≤ a for any lower bound y of B.

DEFINITION 4. (Join and Meet). Let the join of a and b, a ∨ b, be the least upper bound of {a, b}. Let the meet

of a and b, a ∧ b, be the greatest lower bound of {a, b}.

DEFINITION 5. (Lattice). A partially ordered set ⟨A,≤⟩ is a lattice if and only if:

(i) For any a, b ∈ A, a ∨ b ∈ A.

(ii) For any a, b ∈ A, a ∧ b ∈ A.

DEFINITION 6. (Ortho and Orthocomplemented Lattice). A lattice ⟨A,≤⟩ is an ortholattice iff some a ∈ A is

the greatest (call it 1) and some b ∈ A (call it 0) is the least element with respect to ≤. A lattice is an

orthocomplemeted lattice if and only if there is an operation ∗ on A such that, for any a, b ∈ A:

(i) a ∨ a∗ = 1

(ii) a ∧ a∗ = 0

(iii) a∗∗ = a

(iv) (a ∧ b)∗ = a∗ ∨ b∗

DEFINITION 7. (Distributive). A lattice ⟨A,≤⟩ is a distributive iff, for any a, b, c ∈ A: a∧ (b∨ c) = (a∧b)∨ (a∧ c).


