Week III: Modal Propositional Logic (Semantics)

Instructor: Christopher James Masterman (email: c.j.masterman@ifikk.uio.no)
[For feedback, hand in your answers at my pigeon hole on 6 th floor of GM by 12pm on Thursday (2nd March). Write your name clearly on anything you submit.]

1. As precisely as possible, define K-validity. Are the following wffs K-valid? If so, outline your argument for this in detail. If not, specify a model in which the wff is not valid.
(a) $M(p \supset q) \equiv(L p \supset M q)$
(b) $M(p \wedge q) \supset(M p \wedge M q)$
(c) $(M p \wedge M q) \supset M(p \wedge q)$
(d) $M(p \supset(q \wedge r)) \supset((L p \supset M q) \wedge(L p \supset M r))$
2. As precisely as possible, define T-validity and S4-validity. Determine whether the following wffs are either T-valid or S4-valid, or neither. Explain in detail your answer, specify a model if necessary. Is there a wff which is S4-valid, but not T-valid? Why?
(a) $(L p \wedge L q) \supset(p \equiv q)$
(b) $L p \equiv L L p$
(c) $L(L p \supset L q) \vee L(L q \supset L p)$
3. As precisely as possible, define B-validity and S5-validity. Determine whether the following $w f f s$ are either B-valid or S5-valid, or neither. Explain in detail your answer, specify a model if necessary. Is there a wff which is S5-valid, but not B-valid? Why?
(a) $L(M p \supset q) \equiv L(p \supset L q)$
(b) $M L p \supset L M p$
(c) $(L M L p \wedge L M L(q \supset \sim p)) \supset M q$
4. Specify a model $\langle W, R, v\rangle$ such that for some worlds $w, w^{\prime} \in W, \sim R w w^{\prime}$ and in which all theorems of $\mathrm{S} 5\left(\vdash_{5} \alpha\right)$ are valid.
5. How do we prove the K-validity, T-validity, S4-validity, B-validity, and S5validity Theorems? Sketch a proof.
6. Using the relevant validity theorem, show the following.
(a) $\vdash_{k} L(p \supset q) \supset M(p \supset q)$
(b) $\vdash_{4} M L p \supset p$
(c) $\nvdash 5 M L L L L L M M p \supset L p$
7. Let \mathfrak{M}^{S} be the canonical model of the normal modal system S. Show that if the wff α is valid in \mathfrak{M}^{S}, then $\vdash_{s} \alpha$. You do not have to prove any lemmas which your proof may rely on, but they must be stated precisely.
8. Show how your answer to (7.) can be extend to prove the following.
(a) If α is K-valid, then $\vdash_{k} \alpha$
(b) If α is T-valid, then $\vdash_{t} \alpha$
(c) If α is S4-valid, then $\vdash_{4} \alpha$
(d) If α is B-valid, then $\vdash_{b} \alpha$
(e) If α is S5-valid, then $\vdash_{5} \alpha$
