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Introduction & plan for today

This week will look at a common semantics for PML. This is a
model-theoretic semantics, often known as possible worlds semantics.
We look at how to semantically understand the systems K, T, S4, B, S5.
We will then look at the relationship between the semantic and
syntactic characterisation of these logics, particularly completeness.



Intro & Recap PW-Semantics K T S4 B S5 Completeness Summary

Recap

The language of PML, LM
ρ , extends LM

ρ with an operator L.

If p is a wff of LM
ρ , then Lp is too. We define Mp =df ∼L∼p.

The weakest modal logic we consider is K. The axiomatic basis of K is:

(PC) If α is a valid wff of PL, then α is an axiom.
(K) L(p ⊃ q) ⊃ (Lp ⊃ Lq)

The transformation rules for K are the following three.

(MP) If α and α ⊃ β are theorems, then β is a theorem.
(N) If α is a theorem, then Lα is a theorem.

(US) The result of uniformly replacing variables p1, ..., pn in a theorem
with wff β1, ..., βn is itself a theorem.
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Stronger Logics

All other logics considered in this course are stronger than K.
All other logics considered have the same transformation rules.
Each has a stronger axiomatic base, adding axioms to the axioms of K.
For the logic T, we add: (T) Lp ⊃ p

For the logic B, we add (T) Lp ⊃ p and (B) p ⊃ LMp

For the logic S4, we add (T) Lp ⊃ p and (4) Lp ⊃ LLp

For the logic S5, we add (T) Lp ⊃ p and (5) Mp ⊃ LMp
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Introduction to Possible World (PW) Semantics

For Lρ we used valuations v for the semantics. Valuations assigned
truth values to formulae. For LM

ρ we have to complicate this.
Consider: under what conditions is ‘Lp’, or ‘Necessarily, p’ true?

‘Necessarily, p’ is true iff ‘p’ is not possibly false
iff there’s no way in which ‘p’ is false
iff ‘p’ is true in every possible world!

Possible worlds are intuitively ‘total ways the world could have been’.
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Introduction to Possible World (PW) Semantics

We want to assign truth values to all formulae in a way which also
allows us to assign truth values to modal formulae.
The crucial idea: we assign truth values to formulae of LM

ρ relative to
possible worlds. We write v(α, w) = 1 for α is true relative to w.
This allows us to capture the intuitive idea.

(Lv) v(Lp, w) = 1 iff for every possible world w′: v(p, w′) = 1.
(Mv) v(Mp, w) = 1 iff for some possible world w′: v(p, w′) = 1.
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Introduction to Possible World (PW) Semantics

We want a semantics for LM
ρ to study modal logic.

For PL, the valid formulae were true under any interpretation v.
Now formulae are assigned truth values relative to possible worlds.
So, we now need to generalise over worlds, as well as assignments. To
do this, we make use of frames and models based on frames.

A Frame
A frame F = ⟨W, R⟩ is an ordered pair, where W is a non-empty set (of
‘worlds’) and R is a binary relation on W , i.e., for any members
w, w′ ∈ W , it is determinate whether Rww′ or ∼Rww′.
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Introduction to Possible World (PW) Semantics

A Model
A model M = ⟨W, R, v⟩ is an ordered triple, where ⟨W, R⟩ is a frame
and v is a valuation function. Note, we say that the model ⟨W, R, v⟩ is
based on the frame ⟨W, R⟩...

Pause: what’s R? R is often called an accessibility relation.
Intuitively, think of Rww′ as saying that w′ is possible relative to w.
Consider:

w1 : I am in Oslo at t and technology is as it actually is
w2 : I am in London at t + 5mins

If we are interested in some sort of practical possibility, ∼Rw1w2.
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Introduction to Possible World (PW) Semantics

A Model
A model M = ⟨W, R, v⟩ is an ordered triple, where ⟨W, R⟩ is a frame
and v is a valuation function. Note, we say that the model ⟨W, R, v⟩ is
based on the frame ⟨W, R⟩. v satisfies, for wff α, β and w ∈ W :

(∼v) v(∼α, w) = 1 iff v(α, w) = 0; 0 otherwise.
(∧v) v(α ∧ β, w) = 1 iff v(α, w) = 1 and v(β, w) = 1; 0 otherwise.
(∨v) v(α ∨ β, w) = 1 iff v(α, w) = 1 or v(β, w) = 1; 0 otherwise.
(⊃v) v(α ⊃ β, w) = 1 iff v(α, w) = 0 or v(β, w) = 1; 0 otherwise.
(≡v) v(α ≡ β, w) = 1 iff v(α, w) = v(β, w). 0 otherwise.
(Lv) v(Lα, w) = 1 iff for every w′ ∈ W : v(α, w′) = 1; 0 otherwise

(Mv) v(Mα, w) = 1 iff for some w′ ∈ W : v(α, w′) = 1; 0 otherwise
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Introduction to Possible World (PW) Semantics

We can now define some useful semantic notions.
We write M, w ⊨ p when p is true relative to a world w in model.
We write M ⊨ p when p is true relative to every world in M. We will
often say that p is valid in the model M in this case.
We say that p is true in a frame F if M ⊨ p, for every M based on F.
We will often say that p is valid in the frame F in this case.
We say that p is valid if it is valid in every frame F.
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Examples

M is ⟨W, R, v⟩, where W = {w1, w2, w3}, R : Rw1w2, Rw2w3, Rw3w1,
and v(p, w1) = v(p, w2) = 1, and v(p, w3) = 0.

M ⊨ Mp? No: M, w3 ⊭ p and Rw2w3.
M ⊨ Mp ⊃ p? No: M, w3 ⊨ ♢p ∧ ∼p.
M ⊨ ∼p ⊃ Mp? Yes. If M, w ⊨ ∼p, then w = w3. M, w3 ⊨ Mp
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Logic K

How does this semantics relate to the systems we know?

Definition of K-validity
Let a wff α is K-valid iff α is valid in all frames F.

K-validity Theorem (Soundness)
If ⊢k α (α is a theorem of K), then α is K-valid.

Proof Sketch. We show that all the axioms of K are K-valid and all the
transformation rules are K-validity preserving. If α is a theorem of K
(result of applying the transformation rules to axioms), α is K-valid.
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Logic T and T-Validity

We get similar results to K-validity Theorem for other systems by
restricting the class of all frames F in terms of constraints on R.
Consider T. T’s extra axiom: (T) Lp ⊃ p.
Lp ⊃ p is not K-valid, i.e., not valid in any frame F.

Proof. Lp ⊃ p is not K-valid iff Lp ⊃ p is not valid in some frame
⟨W, R⟩ iff there is a model M = ⟨W, R, v⟩ based on some ⟨W, R⟩ in
which Lp ⊃ p fails to hold at some w ∈ W . Let W = {w1, w2},
R : R12, and v(p, w1) = 0 and v(p, w2) = 1. M, w1 ⊨ Lp ∧ ∼p.
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Logic T and T-Validity

We define a class of frames in which all theorems of T are valid by
defining the class of frames in which R is reflexive.

T-frame and T-validity
Let a T-frame be a frame ⟨W, R⟩, where R is a reflexive relation, i.e., for
every w ∈ W : Rww. A wff α is T-valid iff α is valid in every T-frame.

T-validity Theorem
If ⊢t α (α is a theorem of T), then α is T-valid.

Proof. Suppose ⟨W, R, v⟩ is an arbitrary model M based on an arbitrary
T-frame ⟨W, R⟩. Suppose M, w ⊨ Lp, for arbitrary w ∈ W . ⟨W, R⟩ is a
T-frame, so R is reflexive, so Rww. Therefore: M, w ⊨ p.
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S4-Validity

Next consider S4. S4’s extra axiom: (4) Lp ⊃ LLp.
Lp ⊃ LLp is not T-valid, i.e, not valid in any reflexive frame F.

Proof. Let M = {W, R, v}, where W = {w1, w2, w3}, R is reflexive,
Rw1w2, and Rw2w3, and v(p, w1) = v(p, w2) = 1 and v(p, w3) = 0.
M, w1 ⊨ Lp, since for every w′ such that Rww′: M, w′ ⊨ p. But,
M, w1 ⊭ LLp, since M, w2 ⊭ Lp (because Rw2w3 and v(p, w3) = 0
and so M, w3 ⊭ p) and Rw1w2. So, M, w1 ⊭ Lp ⊃ LLp.
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Logic S4 and 4-Validity

We define a class of frames in which all theorems of S4 are valid by
defining the class of frames in which R is reflexive and transitive.
Relation R is transitive iff, for every x, y, z: if Rxy and Ryz, then Rxz.

S4-frame and S4-validity
Let an S4-frame be a frame ⟨W, R⟩, where R is reflexive and transitive.
A wff α is S4-valid iff α is valid in every S4-frame.

S4-validity Theorem
If ⊢4 α (α is a theorem of S4), then α is S4-valid.
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Logic S4 and S4-Validity

Here is a proof by reductio of S4-validity Theorem.
Proof. Suppose ⟨W, R, v⟩ is an arbitrary model M based on a S4-frame.
Suppose as well that M, w ⊨ Lp ∧ ∼LLp, for arbitrary w ∈ W .
If M, w ⊨ Lp ∧ ∼LLp, then M, w ⊨ Lp.
If M, w ⊨ ∼LLp, then some w′: Rww′: M, w′ ⊭ Lp.
If M, w′ ⊭ Lp, then some w′′: Rw′w′′: M, w′′ ⊭ p.
If Rww′ and Rw′w′′ and R is transitive, then Rww′′.
Since M, w′′ ⊭ p and Rww′′, M, w ⊭ Lp.
Contradiction (M, w ⊨ Lp and M, w ⊭ Lp)!
Therefore, for arbitrary M based on a S4-frame: M ⊨ Lp ⊃ LLp
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Logic B and B-Validity

Next consider B. B’s extra axiom: (B) p ⊃ LMp.
p ⊃ LMp is not T-valid, K-valid, or S4-valid.

Proof. Let M = {W, R, v}, where W = {w1, w2, w3}, where R is
reflexive, transitive, and where Rw1w2 but ∼Rw2w1. Suppose, as well,
that v(p, w1) = 1 and v(p, w2) = v(p, w3) = 0. To begin, M, w1 ⊨ p.
Moreover, M, w2 ⊨ ∼Mp, since if Rw2w′, then w′ = w2.
Therefore, M, w1 ⊨ ∼LMp. Thus, M, w1 ⊭ p ⊃ LMp.
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Logic B and B-Validity

We define a class of frames in which all theorems of B are valid by
defining the class of frames in which R is reflexive and symmetric.
Relation R is symmetric iff, for every x, y: if Rxy, then Ryx.

B-frame and B-validity
Let a B-frame be a frame ⟨W, R⟩, where R is reflexive and symmetric.
A wff α is B-valid iff α is valid in every B-frame.

B-validity Theorem
If ⊢b α (α is a theorem of B), then α is B-valid.
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Logic B and B-Validity

Here is a proof of the B-validity Theorem.
Proof. Suppose ⟨W, R, v⟩ is an arbitrary model M based on a
symmetric frame. Suppose M, w ⊨ p. Consider any w′ such that
Rww′.Since R is symmetric, if Rww′, then Rw′w.
Since M, w ⊨ p and Rw′w, M, w′ ⊨ Mp.
Given that w′ was any w ∈ W such that Rww′, M, w ⊨ LMp.



Intro & Recap PW-Semantics K T S4 B S5 Completeness Summary

Logic S5 and S5-Validity

Finally, consider S5. S5’s extra axiom: (5) Mp ⊃ LMp

Mp ⊃ LMp is not T-valid, K-valid, S4-valid, or B-valid.
(Proof of this is an exercise for you!)

We define a class of frames in which all theorems of S5 are valid by
defining the class of frames in which R is an equivalence relation.
R is an equivalence relation iff R is reflexive, transitive, and symmetric.
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Logic S5 and S5-Validity

S5-frame and S5-validity
Let a S5-frame be a frame ⟨W, R⟩, where R is an equivalence relation.
A wff α is S5-valid iff α is valid in every S5-frame.

S5-Validity Theorem
If ⊢5 α (α is a theorem of S5), then α is S5-valid.
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Completeness

We now have a variety of soundness results:

(K) If ⊢k α (α is a theorem of K), then α is K-valid.
(Valid in all frames.)

(T) If ⊢t α (α is a theorem of T), then α is T-valid.
(Valid in all reflexive frames.)

(S4) If ⊢4 α (α is a theorem of S3), then α is S4-valid.
(Valid in all reflexive and transitive frames.)

(B) If ⊢b α (α is a theorem of B), then α is B-valid.
(Valid in all reflexive and symmetric frames.)

(S5) If ⊢5 α (α is a theorem of S5), then α is S5-valid.
(Valid in all reflexive, transitive, and symmetric frames.)
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Completeness

However, this does not guarantee the converse.
For instance, the K-validity Theorem does not guarantee that all
K-validities are theorems of K.
For this, we need a completeness result, e.g., we need to show that if
some wff α is K-valid, then α is a theorem of K.
In what follows, we will show a general completeness result for any
consistent normal modal propositional logic.

(A normal modal logic is, for our purposes,
any propositional modal logic which is an

extension of K.)



Intro & Recap PW-Semantics K T S4 B S5 Completeness Summary

Canonical Models Proof of Completeness

To prove completeness, we define and prove some results about
canonical models. Here’s the broad-strokes outline:

We show that for every normal modal system S there is a model,
a canonical model, which has a special property: any wff α is
valid in the canonical model for S iff it is a theorem of S.

Our starting point is defining maximally consistent sets of wff and
proving some results about them. Why? Because maximally consistent
sets of wff s are going to be the worlds in the canonical model.



Intro & Recap PW-Semantics K T S4 B S5 Completeness Summary

Maximally S-Consistent Sets of wff

S-Consistent Sets of wff s
A set of wff s Γ is S-consistent set Γ iff no finite collection
α1, ..., αn ∈ Γ is such that ⊢s ∼(α1∧, ..., ∧αn).

Maximal Sets of wff s
A set of wff s Γ is maximal iff for every wff α, either α ∈ Γ or ∼α ∈ Γ.

Maximally S-consistent Sets of wff s
A set Γ is maximally S-consistent iff Γ is maximal and S-consistent.
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Maximally S-Consistent Sets of wff s

Now some useful results about maximally S-consistent sets of wff s.

Lemma 1
Suppose that Γ is a maximally S-consistent set of wff. Then:
(i) For any wff α, exactly one member of {α, ∼α} is in Γ.
(ii) α ∨ β ∈ Γ iff either α ∈ Γ iff either α ∈ Γ or β ∈ Γ.
(iii) α ∧ β ∈ Γ iff α ∈ Γ and β ∈ Γ.
(iv) if α ∈ Γ and α ⊃ β ∈ Γ, then β ∈ Γ.

Lemma 2
Suppose that Γ is any maximally S-consistent set of wff. Then:
(i) If ⊢s α, then α ∈ Γ.
(ii) If α ∈ Γ and ⊢s α ⊃ β then β ∈ Γ.
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Maximally S-Consistent Sets of wff s

Theorem 3
Suppose that Λ is an S-consistent set of wff. There is a maximal
S-consistent set of wff Γ such that Λ ⊆ Γ.

Proof. Order all wff of LM
ρ , i.e., α1, α2, .... Then define a sequence

Γ0, Γ1, ..., of sets of wff s as follows.

(1) Γ0 = Λ
(2) Given Γn, let Γn+1 be Γn ∪ {αn+1} if this is S-consistent and let

Γn+1 be Γn ∪ { ∼ αn+1} if otherwise.

Each Γn is S-consistent. Let Γ =
n⋃

i=0
Γi. Γ is maximally S-consistent.
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Modal Features of Maximally S-Consistent Sets

We use these sets of wff s as worlds when we construct the canonical
model. We need to define when such sets access each other by R.

Accessibility R

In the canonical model, RΓ∆ iff for every wff β, if Lβ ∈ Γ, then β ∈ ∆.

Useful notation: If Λ is a set of wff, then let L−(Λ) = {β : Lβ ∈ Λ}.
(Basically, the set of ‘necessitated formulae’ in Λ.)
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Modal Features of Maximally S-Consistent Sets

Question: will R as we have defined it work as we want?

(i) If Lp ∈ Γ and RΓ∆, will p ∈ ∆?
Yes, because of the definitions of R.

(ii) If ∼Lp ∈ Γ, will there be a ∆ such that RΓ∆ and p ∈ ∆?
Yes, but we have to prove that!

Lemma 4
Let S be any normal system of propositional modal logic, and let Λ be
an S-consistent set and ∼Lα ∈ Λ. Then L−(Γ) ∪ {∼α} is S-consistent.
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Proof of Lemma 4

Suppose: Λ is a maximally S-consistent set of wff s.
Suppose: ∼Lα ∈ Λ and yet L−(Λ) ∪ {∼α} is not S-consistent.
If L−(Λ) ∪ {∼α} is S-inconsistent, then some finite β1, ..., βn in L−(Λ):

⊢s ∼(β1∧, ..., ∧βn ∧ ∼α)

So: ⊢s (β1∧, ..., ∧βn) ⊃ α. In any normal modal system:

⊢s L(β1∧, ..., ∧βn) ⊃ Lα

L distributes over conjunction: ⊢s (Lβ1∧, ..., ∧Lβn) ⊃ Lα.
Thus: ⊢s ∼(Lβ1∧, ..., ∧Lβn ∧ ∼Lα). Λ is not S-consistent, then!
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Canonical Models

This has been leading up to the construction of Canonical Models.

Canonical Models for S

A canonical model for S is a triple ⟨W, R, v⟩ such that:
W: W is the set of all maximally S-consistent set of wff s.
R: For any w, w′: Rww′ iff for every wff β if Lβ ∈ w, then β ∈ w′.

(Alternatively: Rww′ iff L−(w) ⊂ w′)
v: v(p, w) = 1 iff p ∈ w.
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Canonical Models

Theorem 5
Let ⟨W, R, v⟩ be the canonical model for a normal propositional modal
system S. Then for any wff α and any w ∈ W , v(α, w) = 1 iff α ∈ W .

Proof. We prove by induction on the complexity of formulae. The
theorem holds for propositional variables. So, we show that:
(a) If theorem holds for α, then it holds for ∼α

(b) If theorem holds for α and β, then it holds for α ∨ β

(c) If theorem holds for α, then it holds for Lα

Corollary 6
Any wff α is valid in the canonical model of S iff ⊢s α.
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Completeness

Corollary 6 is general for any normal modal system S.
For completeness of modal system S we discussed earlier, we show that
the canonical model of S is in the important class of models for S.

(K) Show the canonical model for K is a model.
(T) Show the canonical model for T is a reflexive model

(S4) Show the canonical model for S4 is a reflexive and transitive model
(B) Show the canonical model for B is a reflexive and symmetric model

(S5) Show the canonical model for S5 is an equivalence model
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Summary

We’ve look at possible worlds semantics for modal logic.
We looked at how to set up sound semantics for K, T, S4, B, and S5.
We looked the completeness of this semanticsfor K, T, S4, B, and S5.
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